




Int. J. Environ. Res. Public Health 2021, 18, 5567 16 of 23

Figure 4. Average contribution of the causes on GHG emission increase.

Figure 5. Interval estimates of different studies on full AV effects on GHG emission.

6.1. Causal Loop Diagram (CLD) of the AV’s Effect on GHG Emission

In transport studies, system dynamics have been applied, as the feedback and connec-
tions provided by these models are useful for defining interactions of variables within the
transport system. Shepherd provided a review of the different system dynamics modeling
approaches used in transport systems [104]. In his study, he mentioned that the causal
loop diagram (CLD) is the primary technique used to analyze the qualitative relationships
between various aspects of the system within system dynamics modeling. CLD is a helpful
tool to explore possible sources of dissent to strategies, synergies, and repercussions within
the system. Such prospects will then help identify potential problem statements that can
be addressed by quantitative modeling. A CLD illustrates how important variables of the
system interrelate with each other by using text, arrows and symbols. Arrow running from
the “cause” to the “effect” with a polarity represents the interaction between two variables,
known as a causal connection. A positive polarity indicates that deviations in the “causal”
variable would result in deviations in the “effect” variable in the same direction, assuming
all other influences remain constant in the system. Similarly, a negative arrow shows that
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changes in one variable cause the other to change in the opposite direction, given that all
other conditions are fixed.

The feedback loops created by the causal relationship are termed as balancing (B) or
reinforcing (R) based on the polarity sign, which represents positive or negative feedbacks,
respectively within the system [105].

A CLD is developed based on the literature to depict the interactions of different root
causes and variables with the GHG emissions from AVs (Figure 6). The CLD starts with
the gradual penetration or increased market share of AVs within the transportation system.
This system dynamic model assumes that both the non-AVs and AVs use fossil fuel for
power generation. Since the AVs are fuel-efficient, there is a substantial chance that the
demand for AVs increases, with all its benefits in terms of traffic safety, operation, and
management. However, since the AVs are expected to offer several benefits to the transport
system, the introductory retail price of it might be some fold higher than the conventional
non-AVs. A higher retail price of AV will impart a negative effect on AV’s market share.

Figure 6. Causal Loop Diagram of the influence of fuel-efficient AVs on GHG emissions (inspired by [106,107]).

Nevertheless, the increase in population and social pressure to purchase AVs will
positively affect the AV’s penetration rate to the market. In this context, it is predicted
that the number of cars in the city will increase as the population increases, causing road
congestion as well. Congestion reduces the efficiency of automobile engines, contributing
to increased fuel consumption and leading to higher rates of pollution [107]. An increased
market share of fuel-efficient AVs will reduce the fuel demand as a whole. The reduced
fuel demand initiates a balancing loop; a shortfall of demand will push the fuel price to
increase and increase travel cost per mile, only to be balanced by less miles traveled. The
price of gasoline is a wiggle that can play either in favor or against AVs. As observed today,
gasoline prices have not prevented the ownership and use of fossil fuel vehicles (FFV) in
general, but if prices go up, FFV use could fall as people move to more affordable choices,
given the limited nature of petrol resources. However, an increase in the cost/miles travel
will observe fuel-efficient AVs’ marginal utility as people will enjoy the added benefit by
buying an additional AV unit.

A reinforcing loop will also generate fuel demand. In the event of increased demand,
energy consumption will also escalate, giving rise to vehicle emission or GHG emission.
Implementing pollution reduction policies that cause environmental degradation should be
balanced in this loop, though there is a delay in this cycle that prevents it from performing

Page 50 of 56



Int. J. Environ. Res. Public Health 2021, 18, 5567 18 of 23

as planned. The mounting pressure on policy regulation to control the environmental
degradation will possibly deter the growing AV production. More capital is expected to be
invested within the automobile industry to make the AVs more fuel-efficient.

6.2. AVs Potential Impact on Reducing GHG Emission during a Global Pandemic

On 30 January 2020, the World Health Organization (WHO) announced the respiratory
coronavirus disease outbreak 2019 (COVID-19) and subsequently, on 13 March, declared a
global pandemic. While government policies in most countries reduced mobility, travel
also declined in response to the number of local cases in the respective country. This shows
how people adapted their travel behavior depending on the level of information available
on the outbreak. Not only did people restrict their travel, but destinations were often
avoided that had more infected cases. The automotive and transport industries are closely
observing how consumer behavior changes will impact AV technologies in key aspects
of the economy and daily life, given that numerous changes have been imposed upon
people’s daily lives due to the global COVID-19 pandemic.

COVID-19 is overhauling the consumer’s perceptions towards public transit in ways
that are likely to support AV technology in the longer run. As the pandemic has spread
across the world, people have generally remained home, either by choice or by local direc-
tives. Hence, transit ridership has declined substantially, barring essential and emergency
support workers. Major cities like New York, Washington, D.C., and San Francisco of the
US have seen the ridership plummeted by a staggering 70–90% in August 2020 compared
to the same time in the previous year [108]. While the decrease in ridership is attributed to
home-based work, the closure of educational institutes, and local travel bans, consumers
have become more interested in personal motor vehicle ownership than ever before. While
the potential car customer might be putting new purchases on hold, McKinsey’s recent
survey reported that “20 percent of people in the United States who do not possess a
vehicle under their name, now considering buying one” [108]. This group mainly includes
people who live in cities and rely on public transportation for mobility. While the customer
demands for new and used cars may have temporarily postponed adopting AV systems in
the consumer sector, the COVID-19 pandemic per se warranted the important role of AV in
day-to-day business and, most importantly, to deal with the risks posed by COVID-19.

Over the past decade, the automotive industry has had to adapt to changing attitudes
to mobility, with global car ownership predicted to peak in 2034 before beginning its decline.
However, with many still reluctant to use public transport due to the risk of infection, the
prospect of owning a car may seem more inviting in the context of the unprecedented
COVID-19 pandemic. This change in attitudes towards mobility is already evident in
the adoption of micro-mobility solutions, while some have predicted that autonomous
vehicles, capable of driving with some to no human input, may see an acceleration in
terms of development, deployment and public interest. With industrial activity forced
to slow down, flight and car journeys decreasing, greenhouse gas emissions around the
world have plummeted. Consumers will get used to these changes, which is likely to see
an increase in the adoption of autonomous vehicles in the future. These new vehicles are
meant to be fuel-efficient, affordable, clean and green and a natural feature in smart cities
and interactive communities—and will forever change the future of mobility. One of the
key barriers to autonomous vehicle rollout is public perception, with a 2018 survey by
OpenText revealing that 52% of consumers would not buy a driverless car. However, the
COVID-19 pandemic may have contributed to changing attitudes. When weighing up the
risk of COVID-19 infection presented by public transport or shared mobility, it is possible
that the public will look more favorably on driverless cars. The current pandemic has had a
significant impact on transport demand and mode, with a shift away from shared mobility,
and in particular public transport, because of worries over public health.
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7. Conclusions

Net effects of vehicle automation on emissions across a variety of illustrative exam-
ples show that automation could theoretically reduce GHG emissions and energy usage
plausibly by almost half—or double-fold—depending on the implications that would come
to the fore [22]. It is believed that reductions in GHG emissions through AVs’ adoption
will be negated to an unascertained extent, mainly due to increased car travel, facilitated
by other factors such as lower perceived travel time and costs per km/trip, probable loss
of public transport patronage, and possible increases in car ownership. Thus, it is quite
possible that AVs could be more energy-efficient, thereby reducing the GHG by functional
unit-basis as per-passenger-mile (ppm); however, the overall gain related to transportation
GHG emissions could be swamped by a surge in increased vehicle miles traveled (VMT).

The effect of AV adoption on consumer travel patterns could be more pronounced
from environmental aspects rather than technical attributes. While it is challenging to
accurately estimate the behavioral fronts to AV adoption, a more tangible consideration of
the relationship between different AV adoption models and anticipated travel behavior
is vital for estimating AVs’ environmental impacts. It may be argued from the discussion
presented herein that if AVs are deployed within less approbatory areas or if the road
transportation sector is continued to be dominated by privately owned vehicles, it is likely
that AVs may escalate the transport-related GHG emissions. Hence, adoption tendencies
like vehicle ownership models are also expected to largely influence whether AVs will
decrease or increase the overall VMT as well as the subsequent GHG emissions. Few
studies have indicated that the positive emission changes may not be realized at lower
AV penetration rate, where the maximum emission reduction might take place within the
60–80% AV penetration rate.

Impacts of autonomous vehicles on GHG emission are highly dependent on contin-
uous technological development and evolution, market reaction, and regulatory actions,
making it challenging to confidently predict the overall benefits expected to deliver by
AVs to the transportation systems in terms of GHG emission. With long-term land-use
adjustments, the role of policy, welfare and equity yet to be explored and the potential
effects of AVs remain unknown; it is unlikely that we can anticipate long-term effects on
GHG emission with certainty. Moreover, the overwhelming COVID-19 global pandemic
has also posed challenges to some of the well-perceived mode choice models, which may
force the policymaker to adopt suitable mobility alternatives that ensure public health and
safety. Therefore, it is of paramount importance to develop appropriate methodologies,
tools, and techniques to better understand the impact of GHG emissions for AV adoption
at different levels by harnessing an appropriate system approach.
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